An Eulerian-Lagrangian WENO finite volume scheme for advection problems
نویسندگان
چکیده
Abstract. We develop a locally conservative Eulerian-Lagrangian finite volume scheme with the weighted essentially non-oscillatory property (EL-WENO) in one-space dimension. This method has the advantages of both WENO and Eulerian-Lagrangian schemes. It is formally high-order accurate in space (we present the fifth order version) and essentially non-oscillatory. Moreover, it is free of a CFL time step stability restriction and has small time truncation error. The scheme requires a new integral-based WENO reconstruction to handle trace-back integration. A Strang splitting algorithm is presented for higher-dimensional problems, using both the new integral-based and pointwise-based WENO reconstructions. We show formally that it maintains the fifth order accuracy. It is also locally mass conservative. Numerical results are provided to illustrate the performance of the scheme and verify its formal accuracy.
منابع مشابه
An implicit Eulerian-Lagrangian WENO3 scheme for nonlinear conservation laws
We present a new, formally third order, implicit Weighted Essentially NonOscillatory (iWENO3) finite volume scheme for solving systems of nonlinear conservation laws. We then generalize it to define an implicit Eulerian-Lagrangian WENO (iEL-WENO) scheme. Implicitness comes from the use of an implicit Runge-Kutta (RK) time integrator. A specially chosen two-stage RK method allows us to drastical...
متن کاملConservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow
In this paper, we propose a semi-Lagrangian finite difference formulation for approximating conservative form of advection equations with general variable coefficients. Compared with the traditional semi-Lagrangian finite difference schemes [4, 21], which approximate the advective form of the equation via direct characteristics tracing, the scheme proposed in this paper approximates the conserv...
متن کاملConservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation
Abstract In this paper, we propose a new conservative semi-Lagrangian (SL) finite difference (FD) WENO scheme for linear advection equations, which can serve as a base scheme for the Vlasov equation by Strang splitting [4]. The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume (FV) WENO scheme [3]. However, instead of inputting cell averag...
متن کاملHybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation
In this paper, we propose a new conservative hybrid finite element-finite difference method for the Vlasov equation. The proposed methodology uses Strang splitting to decouple the nonlinear high dimensional Vlasov equation into two lower dimensional equations, which describe spatial advection and velocity acceleration/deceleration processes respectively. We then propose to use a semi-Lagrangian...
متن کاملA conservative high order semi-Lagrangian WENO method for the Vlasov equation
Jing-Mei Qiu and Andrew Christlieb 3 Abstract In this paper, we propose a novel Vlasov solver based on a semi-Lagrangian method which combines Strang splitting in time with high order WENO (weighted essentially nonoscillatory) reconstruction in space. A key insight in this work is that the spatial interpolation matrices, used in the reconstruction process of a semi-Lagrangian approach to linear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 231 شماره
صفحات -
تاریخ انتشار 2012